NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals (चतुर्भुज) (Hindi Medium)
These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals.
प्रश्नावली 8.1
Q1. एक चतुर्भुज के कोण 3 : 5 : 9 : 13 के अनुपात में हैं | इस चतुर्भुज के सभी कोण ज्ञात कीजिए |
हल :
माना ∠A = 3x,
∠B = 5x,
∠C = 9x और
∠D = 13x,
∴∠A + ∠B + ∠C + ∠D = 360o
(किसी चतुर्भुज के चारों कोणों का योग 360० होता है )
⇒ 3x + 5x + 9x + 13x = 360o
⇒ 30x = 360o
अत: सभी कोण
∠A = 3x = 3 × 12o = 36o
∠B = 5x = 5 × 12o = 60o
∠C = 9x = 9 × 12o = 108o
∠D = 13x = 13 × 12o = 156o
Q2. यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है |
हल :
दिया है : ABCD एक समांतर चतुर्भुज है |
जिसके विकर्ण AC = BD है |
सिद्ध करना है : ABCD एक आयत है |
प्रमाण : ΔABD तथा ΔABC में
AD = BC (समांतर चतुर्भुज की सम्मुख भुजा)
AB = AB (उभयनिष्ठ)
BD = AC (दिया है)
SSS सर्वांगसमता नियम से
ΔABD ≅ ΔABC
∴ ∠A = ∠B (By CPCT) …… (1)
चूँकि ABCD एक समांतर चतुर्भुज है |
∴ AD || BC और AB एक तिर्यक रेखा है |
अत: ∠A + ∠B = 180o (अंत: आसन्न कोणों का योग)
⇒∠A + ∠A = 180o ..समीo (1) से
⇒ 2∠A = 180o
⇒ ∠A = 90o
(वह समांतर चतुर्भुज जिसकी एक कोण समकोण हो आयत कहलाता है)
अत: ABCD एक आयत है | proved
Q3. दर्शाइए कि यदि एक चतुर्भुज के विकर्ण परस्पर समकोण पर समद्विभाजित करें, तो वह एक समचतुर्भुज होता है।
हल :
दिया है : ABCD एक चतुर्भुज है |
जिसके विकर्ण AC तथा BD एक दुसरे को बिंदु O
पर समद्विभाजित करते हैं| जहाँ ∠COD = 90o है
और AO = CO तथा BO = DO है|
सिद्ध करना है : ABCD एक आयत है |
प्रमाण : ΔAOB तथा ΔCOD में
AO = CO (दिया है)
BO = DO (दिया है)
∠AOB = ∠COD (शिर्षाभिमुख कोण)
अत: SAS सर्वांगसमता नियम से
ΔAOB ≅ ΔCOD
∴ AB = CD (By CPCT) ………. (1)
तथा ∠BAO = ∠DCO (एकांतर कोण) (By CPCT)
∴ AB || CD ……… (2) (एकांतर कोण बराबर हो तो रेखाएँ समांतर होती है )
समीo (1) तथा (2) से
ABCD एक समांतर चतुर्भुज है |
(यदि किसी चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर एवं समान्तर हो तो वह समान्तर चतुर्भुज होता है |)
∴ AD = BC ……….. (3) (समांतर चतुर्भुज की सम्मुख भुजा बराबर होती है)
अब ΔAOD तथा ΔCOD में
AO = CO (दिया है)
DO = DO (उभयनिष्ठ)
∠AOD = ∠COD (90o प्रत्येक)
अत: SAS सर्वांगसमता नियम से
ΔAOD ≅ ΔCOD
∴ AD = CD (By CPCT) …… (4)
समीo (1), (3) तथा (4) से हम पाते हैं |
AB = BC = CD = AD
अत: ABCD एक समचतुर्भुज है | (Proved)
(वह समान्तर चतुर्भुज जिसकी प्रत्येक भुजा बराबर हो समचतुर्भुज होता है |)
Q4. दर्शाइए कि एक वर्ग के विकर्ण बराबर होते हैं और परस्पर समकोण पर समद्विभाजित करते हैं |
हल :
दिया है : ABCD एक वर्ग है जिसके विकर्ण AC तथा BD एक
दुसरे को बिंदु O पर प्रतिच्छेद करते है |
सिद्ध करना है :
(i) AO = CO तथा BO = DO
(ii) AOB = 90o
प्रमाण : ΔAOB तथा ΔCOD में
AB = CD (वर्ग की भुजा)
∠BAO = ∠DCO (एकांतर कोण)
∠AOB = ∠COD (शिर्षाभिमुख कोण)
अत: ASA सर्वांगसमता नियम से
ΔAOB ≅ ΔCOD
∴ AO = CO तथा BO = DO (By CPCT) ……….. (1)
पुन: ΔAOB तथा ΔBOC में
AB = BC (वर्ग की भुजा)
BO = BO (उभयनिष्ठ)
AO = CO समीo (1) से
अत: SSS सर्वांगसमता नियम से
ΔAOB ≅ ΔBOC
अत: ∠AOB = ∠COB (By CPCT) ……….. (2)
अब ∠AOB + ∠COB = 180o (रैखिक युग्म)
⇒ ∠AOB + ∠AOB = 180o समी0 (2) से
⇒ 2∠AOB = 180o
⇒ ∠AOB = 90o
Proved.
Q5. दर्शाइए कि यदि एक चतुर्भुज के विकर्ण बराबर हो और परस्पर समद्विभाजित करें, तो वह एक वर्ग होता है |
हल :
दिया है : ABCD एकचतुर्भुज है जिसमें विकर्ण AC = BD है और एक
दुसरे को बिंदु O पर प्रतिच्छेद करते है | जहाँ AO = CO तथा BO = DO है |
सिद्ध करना है : ABCD एक वर्ग है |
प्रमाण : ΔAOB तथा ΔCOD में
AO = CO (दिया है)
BO = DO (दिया है)
∠AOB = ∠COD (शिर्षाभिमुख कोण)
अत: SAS सर्वांगसमता नियम से
ΔAOB ≅ ΔCOD
∴ AB = CD(By CPCT) …… (1)
तथा ∠BAO = ∠DCO (एकांतर कोण)(By CPCT)
∴ AB || CD ……… (2) (एकांतर कोण बराबर हो तो रेखाएँ समांतर होती है )
समीo (1) तथा (2) से
ABCD एक समांतर चतुर्भुज है |
(यदि किसी चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर एवं समान्तर हो तो वह समान्तर चतुर्भुज होता है |)
∴ AD = BC ……….. (3) (समांतर चतुर्भुज की सम्मुख भुजा बराबर होती है)
अब ΔAOD तथा ΔCOD में
AO = CO (दिया है)
DO = DO (उभयनिष्ठ)
∠AOD = ∠COD (90o प्रत्येक)
अत: SAS सर्वांगसमता नियम से
ΔAOD ≅ ΔCOD
∴ AD = CD (By CPCT) …… (4)
समीo (1), (3) तथा (4) से हम पाते हैं |
AB = BC = CD = AD ……….. (5)
अब, ΔABD तथा ΔABC में
AD = BC (वर्ग की सम्मुख भुजा)
AB = AB (उभयनिष्ठ)
BD = AC (दिया है)
SSS सर्वांगसमता नियम से
ΔABD ≅ ΔABD
∴ ∠A = ∠B (By CPCT) …… (6)
चूँकि ABCD एक वर्ग है|
∴ AD || BC और AB एक तिर्यक रेखा है |
अत: ∠A + ∠B = 180o (अंत: आसन्न कोणों का योग)
⇒ ∠A + ∠A = 180o ..समीo (6) से
⇒ 2∠A = 180o
⇒ ∠A = 90o ………. (7)
समीo (5) तथा (7) से स्पष्ट है कि
ABCD एक वर्ग है|
Proved.
Q6. समांतर चतुर्भुज ABCD का विकर्ण AC कोण A को समद्विभाजित करता है | दर्शाइए कि
(i) यह ∠C को भी समद्विभाजित करता है |
(ii) ABCD एक समचतुर्भुज है |
हल :
दिया है : ABCD एक समांतर चतुर्भुज है जिसका
विकर्ण AC कोण A को समद्विभाजित करता है |
सिद्ध करना है :
(i) AC, ∠C को भी समद्विभाजित करता है |
(ii) ABCD एक समचतुर्भुज है |
प्रमाण:
(i) ΔABC तथा ΔDAC में,
∠BAC = ∠BAC (दिया है)
∠B = ∠D (समांतर चतुर्भुज के सम्मुख कोण बराबर होते है )
AC = AC (उभयनिष्ठ)
अत: ASA सर्वांगसमता नियम से
ΔABC ≅ ΔDAC
∴ ∠BCA = ∠DCA (By CPCT)
अत: विकर्ण AC, ∠C को समद्विभाजित करता है |
(ii) पुन: AB = AD (By CPCT) ……………. (1)
चूँकि ABCD एक समांतर चतुर्भुज है |
∴ AB = CD (समांतर चतुर्भुज की सम्मुख भुजा ) ……(2)
और
BC = AD (समांतर चतुर्भुज की सम्मुख भुजा ) ……(3)
समीकरण (1), (2) तथा (3) से
AB = BC = CD = AD
अत: ABCD एक समचतुर्भुज है | (Proved)
Q7. ABCD एक समचतुर्भुज है | दर्शाइए कि AC कोणों A और C दोनों को समद्विभाजित करता है तथा विकर्ण BD कोणों B तथा D दोनों को समद्विभाजित करता है|
हल :
दिया है : ABCD एक समचतुर्भुज चतुर्भुज है |
सिद्ध करना है :
(i) AC, ∠A तथा ∠C को भी समद्विभाजित करता है |
(ii) BD, ∠B तथा ∠D को भी समद्विभाजित करता है |
प्रमाण:
(i) ΔABC तथा ΔADC में,
AB = AD (समचतुर्भुज की भुजाएँ)
∠B = ∠D (समचतुर्भुज के सम्मुख कोण बराबर होते है )
AC = AC (उभयनिष्ठ)
अत: SAS सर्वांगसमता नियम से
ΔABC ≅ ΔADC
∴ ∠BAC = ∠DAC (By CPCT) ……………. (1)
∴ ∠BCA = ∠DCA (By CPCT) …………….(2)
समीo (1) तथा (2) से
विकर्ण AC, ∠A तथा ∠C को समद्विभाजित करता है |
इसी प्रकार हम
(ii) BD, ∠B तथा ∠D को भी समद्विभाजित करता है |
को भी सिद्ध कर सकते हैं|
Q8. ABCD एक आयत है जिसमें विकर्ण AC दोनों कोण A और C को समद्विभाजित करता है | दर्शाइए कि:
(i) ABCD एक वर्ग है |
(ii) विकर्ण BD दोनों कोण B और D को समद्विभाजित करता है
हल :
दिया है: ABCD एक आयत है जिसमें विकर्ण AC दोनों कोण A और C को समद्विभाजित करता है |
सिद्ध करना है :
(i) ABCD एक वर्ग है|
(ii) विकर्ण BD दोनों कोण B और D को समद्विभाजित करता है |
प्रमाण:
(i) चूँकि ABCD एक आयत है |
∴ AB = CD ……………… (1) आयत की सम्मुख भुजा
और AD = BC ……………… (2) आयत की सम्मुख भुजा
अब, ΔABC तथा ΔACD में,
∠BAC = ∠DAC (दिया है ) चूँकि AC कोण A और C को समद्विभाजित करता है |
AC = AC (उभयनिष्ठ)
∠B = ∠D (प्रत्येक 90o ) आयत के कोण
A.A.S सर्वांगसमता नियम से
ΔABC ≅ ΔACD
∴ AB = AD ………….. (3) (By CPCT /सर्वांगसम त्रिभुज के संगत भाग)
समीकरण (1), (2) और (3) से
AB = BC = CD = AD
चूँकि ABCD एक आयत है और इसकी प्रत्येक भुजा बराबर भी है |
अत: ABCD एक वर्ग है|
Proved.
(ii) ΔABD तथा ΔCBD में,
AB = BC (वर्ग की भुजा)
BD = BD (उभयनिष्ठ)
∠A = ∠C (प्रत्येक 90o ) वर्ग के कोण
S.A.S सर्वांगसमता नियम से
ΔABD ≅ ΔCBD
Q9. समांतर चतुर्भुज ABCD के विकर्ण BD पर दो बिंदु P और Q इस प्रकार स्थित हैं कि DP = BQ है। दर्शाइए कि
(i) Δ APD ≅ Δ CQB
(ii) AP = CQ
(iii) Δ AQB ≅ Δ CPD
(iv) AQ = CP
(v) APCQ एक समान्तर चतुर्भुज है |
हल :
दिया है : ABCD एक समांतर चतुर्भुज है और DP = BQ है |
सिद्ध करना है :
(i) Δ APD ≅ Δ CQB
(ii) AP = CQ
(iii) Δ AQB ≅ Δ CPD
(iv) AQ = CP
(v) APCQ एक समान्तर चतुर्भुज है |
प्रणाम :
(i) Δ APD तथा Δ CQB में
AD = BC (समांतर चतुर्भुज की सम्मुख भुजा)
DP = BQ (दिया है )
∠ADP = ∠CBQ (एकांतर अत: कोण)
अत: S.A.S सर्वांगसमता नियम से
∴ Δ APD ≅ Δ CQB
(ii) अत: AP = CQ ………………. (1) (By CPCT /सर्वांगसम त्रिभुज के संगत भाग)
(iii) Δ AQB तथा Δ CPD में
AB = DC (समांतर चतुर्भुज की सम्मुख भुजा)
BQ = DP (दिया है )
∠ABQ = ∠CDP (एकांतर अत: कोण)
अत: S.A.S सर्वांगसमता नियम से
∴ Δ AQB ≅ Δ CPD
(iv) अत: AQ = CP ………………. (2) (By CPCT /सर्वांगसम त्रिभुज के संगत भाग)
(v) समीo (1) तथा (2) से
APCQ एक समान्तर चतुर्भुज है |
Q10. ABCD एक समांतर चतुर्भज है तथा AP और CQ
शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं।
दर्शाइए कि
(i) Δ APB ≅ Δ CQD
(ii) AP = CQ
हल :
दिया है : ABCD एक समांतर चतुर्भज है तथा AP और CQ
शीर्षों A और C से विकर्ण BD पर क्रमशः लम्ब हैं।
सिद्ध करना है :
(i) Δ APB ≅ Δ CQD
(ii) AP = CQ
प्रमाण:
(i) Δ APB तथा Δ CQD में,
AB = CD (समांतर चतुर्भुज की सम्मुख भुजा)
∠ABP = ∠CDQ (एकांतर अत: कोण)
∠APB = ∠CQD (प्रत्येक 90o)
अत:, ASA सर्वांगसमता नियम से
Δ APB ≅ Δ CQD
(ii) इसलिए, AP = CQ (By CPCT /सर्वांगसम त्रिभुज के संगत भाग)
Q11. ΔABC और ΔDEF में, AB = DE, AB||DF, BC = EF और BC||EF है | शीर्षों A, B और C को क्रमश: शीर्षों D, E और F से जोड़ा जाता है| दर्शाइए कि
(i) चतुर्भुज ABED एक समांतर चतुर्भुज है।
(ii) चतुर्भुज BEFC एक समांतर चतुर्भुज है।
(iii) AD || CF और AD = CF है|
(iv चतुर्भुज ACFD एक समांतर चतुर्भुज है।
(v) AC = DF है |
(vi) Δ ABC ≅ Δ DEF है |
हल :
दिया है : ΔABC और ΔDEF में, AB = DE, AB||DF, BC = EF और BC||EF है |
सिद्ध करना है :
(i) चतुर्भुज ABED एक समांतर चतुर्भुज है।
(ii) चतुर्भुज BEFC एक समांतर चतुर्भुज है।
(iii) AD || CF और AD = CF है|
(iv चतुर्भुज ACFD एक समांतर चतुर्भुज है।
(v) AC = DF है|
(vi) Δ ABC ≅ Δ DEF है |
प्रमाण:
(i) चतुर्भुज ABED में
AB = DE और AB||DF दिया है |
∴ चतुर्भुज ABED एक समांतर चतुर्भुज है |
( यदि किसी चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर और समांतर हो तो वह समांतर चतुर्भुज होता है )
अब, चूँकि ABED एक समांतर चतुर्भुज है |
∴ AD = BE और AD|| BE ………(1)
(समांतर चतुर्भुज की सम्मुख भुजा बराबर और समांतर होती है)
(ii) इसीप्रकार से, चतुर्भुज BEFC में
BC = EF और BC||EF दिया है |
∴चतुर्भुज BEFC एक समांतर चतुर्भुज है |
अत: CF = BE और CF||BE ……….. (2) (समांतर चतुर्भुज की सम्मुख)
(iii) समीo (1) तथा (2) से
AD || CF और AD = CF है|
(चूँकि सम्मुख भुजाओं का एक युग्म बराबर और समांतर है)
∴चतुर्भुज ACFD एक समांतर चतुर्भुज है।
इसलिए, AC = DF और AC||DF ………. (3)
(vi) Δ ABC और Δ DEF में,
AB = DE (दिया है)
BC = EF (दिया है)
AC = DF (समीo 3 से)
S.S.S सर्वांगसमता नियम से
Δ ABC ≅ Δ DEF
Proved.
Q12. ABCD एक समलम्ब है, जिसमें AB || DC और AD = BC है | दर्शाइए कि
(i) ∠ A = ∠ B
(ii) ∠ C = ∠ D
(iii) Δ ABC ≅ Δ BAD
(iv) विकर्ण AC = विकर्ण BD है |
हल :
दिया है : ABCD एक समलम्ब है,
जिसमें AB || DC और AD = BC है |
सिद्ध करना है :
(i) ∠ A = ∠ B
(ii) ∠ C = ∠ D
(iii) Δ ABC ≅ Δ BAD
(iv) विकर्ण AC = विकर्ण BD है |
रचना : AD के समांतर CE खिंचा |
प्रमाण: AB || DC ……….. (1) दिया है |
AD || CE ………… (2) रचना से
[चूँकि सम्मुख भुजाओं का प्रत्येक युग्म समांतर हो तो वो समांतर चतुर्भुज होता है] |]
समीकरण (1) तथा (2) से
AECD एक समांतर चतुर्भुज है |
∴ AD = CE ………. (3) [समांतर चतुर्भुज AECD की सम्मुख भुजा]
जबकि, AD = BC ……….. (4) दिया है |
समीo (3) तथा (4) से
BC = CE
∴ ∠2 = ∠3 …………… (5) (बराबर भुजाओं के सम्मुख कोण … )
AB || CD दिया है और BC एक तिर्यक रेखा है |
∴ ∠2 = ∠5 ………….. (6) [अंत: एकांतर कोण]
समीo (5) तथा (6) से हमें प्राप्त होता है |
∠3 = ∠5 ………. (7)
अब DBEC में,
बहिष्कोंण ∠1 = ∠3 + ∠4
या ∠1 = ∠5 + ∠4 समीo (7) से
या ∠B = ∠ECD ………… (8)
चूँकि, AECD एक समांतर चतुर्भुज है |
∴ ∠A = ∠ECD …………… (9) [समांतर चतुर्भुज के सम्मुख कोण]
समीo (8) और (9) से
∠A = ∠B ………(10) Proved (i)
(ii) पुन:, ∠D = ∠E [समांतर चतुर्भुज के सम्मुख कोण]
या ∠D = ∠3 ……… (11)
समीo (7) और (11) से
∠D = ∠5
या ∠D = ∠C proved(ii)
(iii) Δ ABC और Δ BAD में
AD = BC (दिया है)
AB = AB (उभयनिष्ठ भुजा’)
∠A = ∠B समीo (10) से
अत: SAS सर्वांगसमता नियम से
Δ ABC ≅ Δ BAD
(iv) विकर्ण AC = विकर्ण BD (By CPCT /सर्वांगसम त्रिभुज के संगत भाग)
प्रश्नावली 8.2
Q1. ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं | AC उसका एक विकर्ण है | दर्शाइए कि
हल :
दिया है : ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं |
सिद्ध करना है :
दिया है : ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं |
सिद्ध करना है :
दिया है : ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं |
सिद्ध करना है :
(यदि किसी चतुर्भुज के सम्मुख भुजाओं के एक युग्म में से कोई भी एक युग्म बराबर और समान्तर हो तो वो समान्तर चतुर्भुज होता है) .
इसलिए PQRS एक समान्तर चतुर्भुज है |
Q2. ABCD एक समचतुर्भुज है और P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु है। दर्शाइए कि चतुर्भुज PQRS एक आयत है।
हल :
दिया है : ABCD एक समचतुर्भुज है और P, Q, R और S
क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु है।
सिद्ध करना है :
PQRS एक आयत है |
प्रमाण : त्रिभुज ADC में
AD तथा CD का मध्यबिंदु क्रमश: S तथा R है | (दिया है )
(यदि किसी चतुर्भुज के सम्मुख भुजाओं के एक युग्म में से कोई भी एक युग्म बराबर और समान्तर हो तो वो समान्तर चतुर्भुज होता है)
इसलिए PQRS एक समान्तर चतुर्भुज है |
चूँकि ABCD एक समचतुर्भुज है |
इसलिए, ∠AOD = 90०
या ∠MON = 90०
(समचतुर्भुज के विकर्ण एक दुसरे को समकोण पर समद्विभाजित करते हैं !)
अब SR || AC और SP || BD है
तो SMON भी एक समान्तर चतुर्भुज है |
इसलिए ∠MSN = ∠MON = 90० (समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं)
या ∠PSR = 90०
अत: PQRS एक आयत है |
Proved.
Q3. ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं | दर्शाइए कि चतुर्भुज PQRS एक समचतुर्भुज है|
हल :
दिया है : ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं |
सिद्ध करना है :
PQRS एक समचतुर्भुज है |
रचना : A को C से मिलाया |
प्रमाण : त्रिभुज ADC में
AD तथा CD का मध्यबिंदु क्रमश: S तथा R है | (दिया है )
अत: मध्य-बिंदु प्रमेय से
(यदि किसी चतुर्भुज के सम्मुख भुजाओं के एक युग्म में से कोई भी एक युग्म बराबर और समान्तर हो तो वो समान्तर चतुर्भुज होता है) .
इसलिए PQRS एक समान्तर चतुर्भुज है |
अब, चूँकि ABCD एक आयत है |
इसलिए , AB || CD या SQ || CD …(i)
(क्योंकि S तथा Q AD तथा BC के मध्य-बिंदु है |)
इसीप्रकार AD || PR …… (ii)
अत: समीकरण (i) तथा (ii) से
DSOR एक समान्तर चतुर्भुज है |
इसलिए, ∠SOR = ∠D (समान्तर चतुर्भुज कि सम्मुख भुजा)
जबकि, ∠D = 90० (आयत का प्रत्येक कोण)
इसलिए ∠SOR = 90०
चूँकि PQRS एक समांतर चतुर्भुज है जिसके विकर्ण समकोण पर प्रतिच्छेद करते हैं |
अत: PQRS एक समचतुर्भुज है |
(वह समांतर चतुर्भुज जिसके विकर्ण समकोण पर प्रतिच्छेद करते हैं समचतुर्भुज कहलाता है |)
Q4. ABCD एक समलंब है, जिसमें AB || DC है। साथ ही, BD एक विकर्ण है और E भुजा AD का मध्य-बिंदु है। E से होकर एक रेखा AB के समांतर खींची गई है, जो BC को F पर प्रतिच्छेद करती है । दर्शाइए कि F भुजा BC का मध्य-बिंदु है।
हल :
दिया है : ABCD एक समलंब है, जिसमें AB || DC है।
साथ ही, BD एक विकर्ण है और E भुजा AD का
मध्य-बिंदु है। E से होकर एक रेखा AB के समांतर
खींची गई है, जो BC को F पर प्रतिच्छेद करती है ।
सिद्ध करना है : CF = BF
रचना : D को B से मिलाया जो EF को G पर प्रतिच्छेद करता है |
प्रमाण :
DABD में,
AB || EF ….. (i) (दिया है)
और E भुजा AD का मध्य-बिंदु है|
(किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खिंची गई रेखा तीसरी भुजा को समद्विभाजित करती है)
अत: मध्य-बिंदु प्रमेय 8.10 से
इसलिए बिंदु G भुजा BD का मध्य-बिंदु है| …. (i)
अब AB || CD ……. (ii) (दिया है)
समीकरण (i) तथा (ii) से
CD || EF और बिंदु G भुजा BD का मध्य-बिंदु है [समीकरण (i) से]
अत: मध्य-बिंदु प्रमेय 8.10 से DBCD में
F भुजा BC का मध्य-बिंदु है |
इसलिए CF = BF
proved.
Q5. एक समांतर चतुर्भुज ABCD में E और F क्रमश: भुजाओं AB और CD के मध्य-बिंदु हैं | दर्शाइए कि रेखाखंड AF और EC विकर्ण BD को समत्रिभाजित करते हैं |
हल :
दिया है : एक समांतर चतुर्भुज ABCD में E और F
क्रमश: भुजाओं AB और CD के मध्य-बिंदु हैं |
सिद्ध करना है : DP = PQ = QB
प्रमाण :
DABP में,
E भुजा AB का मध्य-बिंदु है और AF||EC दिया है |
अत: मध्य-बिंदु प्रमेय 8.10 से
Q भुजा PB का मध्य-बिंदु है |
अत: PQ = QB ………. (i)
(किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खिंची गई रेखा तीसरी भुजा को समद्विभाजित करती है)
अब, DCDQ में,
F भुजा CD का मध्य-बिंदु है और AF||EC दिया है |
अत: मध्य-बिंदु प्रमेय 8.10 से
P भुजा DQ का मध्य-बिंदु है |
इसलिए, DP = PQ …….. (ii)
समीकरण (i) तथा (ii) से
DP = PQ = QB
Proved.
Q6. दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं।
हल :
दिया है : ABCD एक चतुर्भुज है जिसके भुजाएँ
AB, BC, CD और DA का मध्य-बिंदु क्रमश:
P, Q, R और S है |
सिद्ध करना है : विकर्ण PR और SQ एक दुसरे को समद्विभाजित करते हैं |
रचना : P, Q, R और S को मिलाया और A को C से मिलाया |
(यदि किसी चतुर्भुज के सम्मुख भुजाओं के एक युग्म में से कोई भी एक युग्म बराबर और समान्तर हो तो वो समान्तर चतुर्भुज होता है) .
इसलिए PQRS एक समान्तर चतुर्भुज है |
अब चूँकि PQRS एक समांतर चतुर्भुज है तो इसके विकर्ण PR और SQ एक दुसरे को समद्विभाजित करते हैं |
(समांतर चतुर्भुज के विकर्ण एक दुसरे को समद्विभाजित करते है |)
Q7. ABC एक त्रिभुज है जिसका कोण C समकोण है | कर्ण AB के मध्य-बिंदु M से होकर BC के समांतर खिंची गई रेखा AC को D पर प्रतिच्छेद करती है | दर्शाइए कि
हल :
दिया है : ABC एक त्रिभुज है जिसका
कोण C समकोण है | कर्ण AB के मध्य-बिंदु
M से होकर BC के समांतर खिंची गई रेखा
AC को D पर प्रतिच्छेद करती है |
सिद्ध करना है :
प्रमाण : (i) DABC में
M भुजा AB का मध्य-बिंदु है और MD || BC है |
अत: मध्य-बिंदु प्रमेय 8.10 से
(किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खिंची गई रेखा तीसरी भुजा को समद्विभाजित करती है)
इसलिए, D भुजा AC का मध्य-बिंदु है |
अत: AD = CD …….. (i)
(ii) MD || BC दिया है और AC एक तिर्यक रेखा है |