NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers (Hindi Medium)

Created with Sketch.

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 10 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers.

Chapter 1. वास्तविक संख्याएँ

अभ्यास 1.1

प्र.1. युक्लिड विभाजन अल्गोरिथम के प्रयोग से HCF ज्ञात कीजिये | 

 (i) 135 और 225 (ii) 196 और 38220 (iii) 867 और 255

हल:  

(1)    135 और 225

a = 225, b = 135 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

225 = 135 ×1 + 90

135 = 90 ×1 + 45

90 = 45 × 2 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 45 {फिर उसमे से b का मान HCF होता है;}

HCF = 45

हल:

(ii)    196 और 38220

a = 38220, b = 196  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196      {फिर उसमे से b का मान HCF होता है;}

HCF = 196

हल:

(iii)   867 और 255

a = 867, b = 255 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196  {फिर उसमे से b का मान HCF होता है;}

HCF = 196

 

प्र.2. दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1, या 6q + 3, या 6q + 5, के रूप का होता है जहाँ q कोई पूर्णांक है |

हल:

दर्शाना है: a = 6q + 1, 6q+3 या  6q+5

माना कि a कोई धनात्मक विषम पूर्णांक है;  जहाँ b = 6 होगा,

जब हम 6 से a को विभाजित करते है जो शेषफल क्रमश: 0, 1, 2, 3, 4 और 5 पाते है;

जहाँ 0 ≤ r < b

यहाँ a एक विषम संख्या है इसलिए शेषफल भी विषम संख्या प्राप्त होता है |

शेषफल होगा 1 या 3 या 5

युक्लिड विभाजन अल्गोरिथम के प्रयोग से हम पाते है;

a = 6q + 1, 6q+3 या 6q+5

प्र०3. किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है | दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है | उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते है ?

हल:

स्तंभों की अधिकतम संख्या = HCF (616, 32)

a = 616, b = 32  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

616 = 32 ×19 + 8  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

32 = 8 × 4 + 0

b = 8 {b का मान HCF होता है}

HCF = 8

इसलिए स्तंभों की अधिकतम संख्या = 8

प्र०4. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है |

हल :

दर्शाना है : a2 = 3m or 3m + 1

a = bq + r

माना कि a कोई धनात्मक पूर्णांक है जहाँ b = 3 और r = 0, 1, 2 क्योंकि 0 ≤ r < 3

तब a = 3q + r  कुछ पूर्णांक के लिए q ≥ 0

इसलिए, a = 3q + 0 or 3q + 1 or 3q + 2

अब हम पाते है;

⇒ a2 = (3q + 0)2 or (3q + 1)2 or (3q +2)2

⇒ a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 4

⇒ a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 3 + 1

⇒ a2 = 3(3q2) or 3(3q2 + 2q) + 1 or 3(3q2 + 4q + 1) + 1

यदि m = (3q2) or (3q2 + 2q)  or (3q2 + 4q + 1) हो तो

हम पाते है कि ;

a2 = 3m or 3m + 1 or 3m + 1

प्र०5. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |

हल:

माना, a कोई धनात्मक पूर्णांक है;

युकिल्ड विभाजन प्रमेयिका के प्रयोग से;

a = bq + r जहाँ; 0 ≤ r < b

b = 9 रखने पर

a = 9q + r जहाँ; 0 ≤ r < 9

जब r = 0 हो;

a = 9q + 0 = 9q

a3  = (9q)3 = 9(81q3) या 9m जहाँ m = 81q3

जब r = 1 हो

a = 9q + 1

a3 = (9q + 1)3 = 9(81q3 + 27q2 + 3q) + 1

= 9m + 1  जहाँ m = 81q3 + 27q2 + 3q

जब r = 2 हो तो

a = 9q + 2

a3  = (9q + 2)3 = 9(81q3 + 54q2 + 12q) + 8

= 9m + 2  जहाँ m = 81q3 + 54q2 + 12q

अत: किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |

प्रश्नावली 1.2

Q1. निम्नलिखित संख्याओं को अभाज्य गुणनखंड के रूप में व्यक्त कीजिये :
(i) 140   

हल:

NCERT Solutions For Class 10 Maths Hindi Medium PDF
140 का अभाज्य गुणनखंड
= 22 × 5 × 7

(ii) 156

हल:

NCERT Solutions For Class 10 Maths Hindi Medium PDF 1
156 का अभाज्य गुणनखंड
= 22 × 3 × 13

(iii) 3825

हल:

NCERT Maths Solutions For Class 10 Hindi Medium

3825 का अभाज्य गुणनखंड
= 32 × 52 × 17

(iv) 5005

हल:

NCERT Solutions For Class 10 Maths Hindi Medium

5005 का अभाज्य गुणनखंड
= 5 × 7 × 11 × 13

(v) 7429

हल:

NCERT Maths Hindi Medium Solutions For Class 10
7429 का अभाज्य गुणनखंड
= 17 x 19 x 23

Q2. पूर्णांकों के निम्नलिखित युग्मों के LCM and HCF ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = LCM × HCF है| 

(i) 26 and 91

हल:

26 = 2 × 13

91 = 7 × 13

सार्व गुणनखंड = 13

∴ HCF = 13

LCM = 2 × 7 × 13 = 182

अब, जाँच,

दो संख्याओं का गुणनफल = LCM × HCF

N1 × N2 = LCM × HCF

26 × 91 = 13 × 182

2366 =  2366

इति सिद्धम |

(ii) 510 and 92

हल:

510 = 2 × 3 × 5 × 17

92 = 2 × 2 × 23

सार्व गुणनखंड = 2

∴ HCF = 2

LCM = 2 × 2 × 3 × 5 × 17 × 23 =  23460

अब, जाँच,

दो संख्याओं का गुणनखंड = LCM × HCF

N1 × N2 = LCM × HCF

510 × 92 = 2 × 23460

46920 =  46920

इति सिद्धम |

(iii) 336 and 54

हल:

336 = 2 × 2 × 2 × 2 × 3 × 7

54 = 2 × 3 × 3 × 3

सार्व गुणनखंड = 2 × 3

∴ HCF = 6

LCM = 2 × 2 × 2× 2 × 3 × 3 × 3 × 7 =  3024

जाँच,

दो संख्याओं का गुणनफल = LCM × HCF

N1 × N2 = LCM × HCF

336 × 54 = 6 × 3024

18144 =  18144

इति सिद्धम |

Q3. अभाज्य गुणनखंड विधि द्वारा निम्नलिखित पूर्णांकों के LCM और HCF ज्ञात कीजिए |

(i) 12, 15 and 21

हल:

12 = 2 × 2 × 3

15 = 5 × 3

21 = 7 × 3

सार्व गुणनखंड = 3

HCF = 3

​LCM = 3 × 2 × 2 × 5 × 7 = 420

(ii) 17, 23 and 29

हल:

17 = 1 × 17

23 = 1 × 23

29 = 1 × 29

HCF = 1

LCM = 17 × 23 × 29 = 11339

(iii) 8, 9 and 25

हल:

8 = 2 × 2 × 2

9 = 3 × 3

25 = 5 × 5

यहाँ 1 को छोड़कर अन्य कोई सार्व गुणनखंड नहीं है |

∴ HCF = 1

LCM = 2 × 2 × 2 × 3 × 3 × 5 × 5

= 8 × 9 × 25

= 1800

Q4. HCF (306, 657) = 9, दिया है | LCM (306, 657) ज्ञात कीजिए | 

हल:

HCF (306, 657) = 9

LCM × HCF = ​N1 × N2

Maths NCERT Solutions For Class 10 Hindi Medium
NCERT Solutions For Maths Class 10 Hindi Medium
LCM = 22338

Q5. जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए संख्या 6n अंक 0 पर समाप्त हो सकती है | 

हल:

6n का अभाज्य गुणनखंड = (2 × 3 )n

जबकि, कोई प्राकृत संख्या जो शून्य पर समाप्त होती है उसके अभाज्य गुणनखंड (2 × 5 )n के रूप का होता है |

अत:, 6n शून्य पर समाप्त नहीं होगी |

Q6. व्याख्या कीजिए 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्या क्यों है ?

हल :

माना A = 7 × 11 × 13 + 13

= 13 (7 × 11 + 1)

= 13 (77 + 1)

= 13 × 78

अत: यह एक भाज्य संख्या है क्योंकि इसके अभाज्य गुणनखंड में 1 को छोड़कर अन्य दो गुणनखंड हैं |

इसीप्रकार,

माना B = 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5

= 5 (7 × 6 × 4 × 3 × 2 × 1 + 1)​

= 5 × (1008 + 1)

= 5  ×  1009

अत: यह भी एक भाज्य संख्या है क्योंकि इसके भी अभाज्य गुणनखंड में 1 को छोड़कर अन्य दो गुणनखंड हैं |

Q7. किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रांरभिक स्थान पर मिलेंगे?

हल: 

एक चक्कर में सोनिया 18 मिनट लेती हैं |

रवि एक चक्कर में 12 लगाता है |

वे दोनों एक ही स्थान पर LCM(18, 12) मिनट के बाद मिलेंगे |

अत:

18 = 2 × 3 × 3

12 = 2 × 2 × 3

HCF = 2 × 3 = 6

 Hindi Medium Solutions For NCERT Maths Class 10
= 36 मिनट |

प्रश्नावली 1.3 

Q1. सिद्ध कीजिए कि √5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि √5 एक परिमेय संख्या है |

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए,

NCERT Solutions for Class 10th Mathematics Chapter 1 Real Numbers (Hindi Medium) 1.2 10
NCERT Hindi Medium Solutions Of Maths For Class 10
यहाँ 5 aको विभाजित करता है अत: 5 a को भी विभाजित करेगा | ….(1)

प्रमेय 1.3 द्वारा ]

अत: a = 5c माना      [ क्योंकि a 5 द्वारा विभाजित होता है अर्थात a का 5 कोई गुनाखंड है |]

5b2 = a2 में a = 5c रखने पर

⇒          5b2 = (5c)2

⇒          5b2 = 25c2

⇒            b2 = 5c2

NCERT Solutions for Class 10th Mathematics Chapter 1 Real Numbers (Hindi Medium) 1.2 11

यहाँ 5 bको विभाजित करता है अत: 5 b को भी विभाजित करेगा | ….(2)

प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 5 a तथा b दोनों को विभाजित करता है जिसमें 5 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है |

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि

अत: √5 एक अपरिमेय संख्या है |

Q2.  सिद्ध कीजिए  कि 3 + 2√5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि 3 + 2√5 एक परिमेय संख्या है |

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए,

NCERT Solutions for Class 10th Mathematics Chapter 1 Real Numbers (Hindi Medium) 1.2 12

और p तथा q को उभयनिष्ठ गुणनखंड से विभाजित कर एक सह-अभाज्य संख्या a तथा b प्राप्त कर सकते हैं |

Maths Hindi Medium Solutions For Class 10 NCERT

चूँकि a तथा b पूर्णांक है और 2 तथा 3 भी पूर्णांक है |

NCERT Solutions for Class 10th Mathematics Chapter 1 Real Numbers (Hindi Medium) 1.2 14

इससे एक विरोधाभासी परिणाम प्राप्त होता है कि √5 परिमेय संख्या है |

ऐसा विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि 3 + 2√5 एक परिमेय संख्या है |

अत: 3 + 2√5 एक अपरिमेय संख्या है |

Solutions For Maths NCERT Class 10 Hindi Medium
NCERT Books Solutions For Class 10 Maths Hindi Medium
यहाँ 2 bको विभाजित करता है अत: 2, b को भी विभाजित करेगा | ….(1)

प्रमेय 1.3 द्वारा ]

अत: b = 2c माना      [ क्योंकि a 5 द्वारा विभाजित होता है | ]

NCERT Maths Book Solutions For Class 10 Hindi Medium
यहाँ 2 aको विभाजित करता है अत: 2 a को भी विभाजित करेगा | ….(2)

प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 2 a तथा b दोनों को विभाजित करता है जिसमें 2 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है, क्योंकि हमने a तथा b को सह-अभाज्य प्राप्त किया था |

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि

CBSE NCERT Maths Hindi Medium Solutions For Class 10
CBSE NCERT Solutions For Class 10 Maths Hindi Medium
NCERT Maths Textbook For Class 10 Hindi Medium Solutions

प्रश्नावली 1.4 

Q1. बिना लंबी विभाजन प्रक्रिया किए बताइए कि निम्नलिखित परिमेय संख्याओं के दशमलव प्रसार सांत हैं या असांत आवर्ती हैं :

NCERT Books For Class 10 Maths Hindi Medium Solutions

हल :

NCERT Maths Textbook Hindi Medium Solutions For Class 10
हर का अभाज्य गुणनखंड 55 है और इसे 2× 5n के रूप में व्यक्त किया जा सकता है अत: यह एक सांत दशमलव प्रसार है |

NCERT Book Solutions For Class 10 Maths Hindi Medium
हर का अभाज्य गुणनखंड 23 है और इसे 2× 5n के रूप में व्यक्त किया जा सकता है अत: यह एक सांत दशमलव प्रसार है |

NCERT Solutions For Class 10 Maths Hindi Medium PDF Free Download
हर का अभाज्य गुणनखंड 5 × 7 × 13 है और इसे 2× 5n के रूप में व्यक्त नहीं किया जा सकता है अत: यह एक असांत दशमलव प्रसार है |

NCERT Book Solutions For Class 10 Maths Hindi Medium Real Numbers
हर का अभाज्य गुणनखंड 26 × 52 है और यह 2× 5n के रूप में व्यक्त है अत: यह एक सांत दशमलव प्रसार है |

NCERT Textbook Solutions For Class 10 Maths Hindi Medium Real Numbers 1.2 27
NCERT Books Solutions For Class 10 Maths Hindi Medium PDF Real Numbers (Hindi Medium) 1.2 28
NCERT Solutions for Class 10th Mathematics Chapter 1 Real Numbers (Hindi Medium) 1.2 29
Download NCERT Hindi Medium Solutions For Class 10 Maths Real Numbers
NCERT Solutions For Class 10 Maths PDF Real Numbers Hindi Medium
Q2. ऊपर दिए गए प्रश्न में उन परिमेय संख्याओं के दशमलव प्रसारों को लिखिए जो सांत हैं |

हल : प्रश्न संख्या 1 में सांत दशमलव प्रसार वाले प्रश्न निम्नलिखित हैं |

(i), (ii), (iii), (iv), (vi), (viii) और (ix)

NCERT Maths Solutions For Class 10 Real Numbers Hindi Medium 1.2 32
Maths NCERT Solutions For Class 10 Chapter 1 Real Numbers Hindi Medium 1.2 33
NCERT Solutions For Maths Class 10 Real Numbers Hindi Medium 1.2 34
Solutions For NCERT Maths Class 10 Chapter 1 Real Numbers Hindi Medium 1.2 35

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!
This is a free online math calculator together with a variety of other free math calculatorsMaths calculators
+